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1 Introduction
1.1 Probabilistic Programming
Probabilistic programming is a programming paradigm where the users can freely specify probabilistic models
and reason about them without having to manually implement their inference.

A probabilistic model is set of stochastic and deterministic relationships between variables, such as:

yi ∼ N (µi, σ
2)

µi = β0 + xiβ1

Given this model and some data D = {xi, yi}ni=1 a user could ask questions like:

• What are the most likely values for β0, β1?

• What’s an interval in which β1 lies, with 95% confidence?

• Are β0 and β1 correlated?

By embracing a Bayesian approach we can devise automatic ways to get an answer to these questions,
without having to perform tedious manual calculations or having to manually write a sampler.

1.2 Computational Bayes
Under the Bayesian framework we to treat our parameters as random variables. The uncertainty on these
parameters, prior to seeing any data, will be represented using a prior distribution. In particular, we can
decide to model the uncertainty on the intercept β0 and slope β1 like this:

β0 ∼ N (0, 105)

β1 ∼ N (0, 105)

Let θ = [β0, β1]
T denote the complete set of parameters. Then can we define the prior distribution on our

parameters:
π(θ) = π(β0, β1) = fβ0,β1

(b0, b1) = P (β0 = b0, β1 = b1)

We are interested in the posterior distribution π(θ | D), that is, how has the belief on our parameters
changed after having observed some data.

Bayes theorem gives us an automatic way to obtain, at least up to proportionality, the posterior:

π(θ | D) ∝ π(θ)L(D | θ)
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Unfortunately, computing the posterior symbolically can be intractable. To sidestep this limitation, we
can restrict ourselves to only drawing samples from the posterior, a tasks for which many scalable (w.r.t
parameters and data) algorithms exist.

Sampling from a distribution is analogous to knowing it thanks to the Law of Large Numbers (LLN).

Let X be a random variable and let {xi}ni=1 be i.i.d. (independent and identically distributed) samples.
Then the LLN states that, in probability, the sample average converges to the expected value:
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n

n∑
i=1

xi −→ E(X)

1.3 Gibbs sampling
Now that we know that sampling from the posterior distribution is good enough to answer most of our
questions, let us focus on how to actually extract samples from it.

For very simple distributions like uniform, normal, or exponential, many algorithms such as inverse trans-
form sampling or rejection sampling are sufficient. However, when moving to complicated high-dimensional
distributions, these methods do not scale well.

Gibbs sampling is a Markov chain Monte Carlo (MCMC) algorithm for obtaining samples from a distribution,
when direct sampling is difficult. As with many MCMC methods the samples returned by the algorithm
are not i.i.d., in fact, they are highly correlated. Thanks to techniques such as burn-in and thinning we can
reduce this issue and work freely with our samples.

Gibbs sampling is particularly useful when we cannot sample directly from the joint distribution but we can
easily sample from the conditional distribution of each variable.

1.3.1 Algorithm

Let k be the number of samples we want to get from a n-dimensional random variable X = (x1, ..., xn).

Let X be distributed with the joint PDF p(x1, ..., xn).

We denote the ith sample by x(i) = (x
(i)
1 , ..., x

(i)
n )

The algorithm is the following:

• Begin with some initial value x(i)

• To get the next sample x(i+1) = (x
(i+1)
1 , ..., x

(i+1)
n ) we sample each component x

(i+1)
j separately.

– First we obtain xi+1
1 sampling from X1 | X2 = x

(i)
2 , ..., Xn = x

(i)
n

– We continue this cycling scheme by sampling xi+1
2 from X2 | X1 = x

(i+1)
1 , X3 = x

(i)
3 , ..., Xn = x

(i)
n

– Until we get x
(i+1)
n from Xn | X1 = x

(i+1)
1 , ..., Xn−1 = x

(i+1)
n−1

• This process is repeated k times

Because each dimension is explored separately, we can imagine Gibbs sampling as exploring the parameter
space moving as if it were a chess board, as shown in figure 1.

1.4 JAGS
JAGS, acronym for Just Another Gibbs Sampler, is a software package for specifying probabilistic models
and analyzing them using MCMC simulation. It is the spiritual successor to BUGS, WinBUGS[3], and
OpenBUGS.
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Figure 1: Visualizing how a Gibbs sampler explores a 2D parameter space. Since every dimension is explored
separately, all steps will be axis-aligned, leading to its peculiar chessboard-like pattern. Taken from [4]

JAGS allows us to specify a probabilistic models in the BUGS language. For example, our linear regression
model is specified like this:

model {
beta0 ~ dnorm(0, 0.00001)
beta1 ~ dnorm(0, 0.00001)
tau <- 1 / sigma2
for (i in 1:N) {

mu[i] <- beta0 + x[i] * beta1
y[k] ~ dnorm(mu[i], tau)

}
}

Notice how instead of parameterizing the normal distribution using the variance σ2 we use its inverse τ ,
known as the precision.

After writing the model in the BUGS language, JAGS will parse it and build a Directed Acyclic Graph (DAG)
using the distributions and deterministic values as nodes, and their stochastic or deterministic relations as
edges.

Thanks to the DAG, JAGS can infer the independence structure of our distribution and automatically obtain
their conditional distributions. Additionally, using this knowledge, it can perform many optimizations such
as conjugacy-detection or blocked-Gibbs-sampling. We can see an example of one of these DAGs in figure 2

2 Comparison of linear regression methods
Having described probabilistic programming and Gibbs sampling, let’s now put it in practice. We are
analyzing one of the Classic BUGS examples called Stacks. This example is taken from David Birkes and
Yadolah Dodge’s Alternative Methods of Regression, Chapter 9, Section 9.3 Example 3 [2].

The aim of this example is to explore how different error structures influence the results of linear regression.

The dataset is the famous stack loss dataset. It consists of 21 days of measurements from a factory for the
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Figure 2: The DAG structure which our linear regression model encodes. The iteration on the index i is
expressed using a plate, i.e. the rectangle around xi, µi, yi

oxidation of ammonia to nitric acid. Each measurement records the air flow x1, the cooling water temperature
x2, the concentration of acid x3, and the amount of ammonia that escaped before being oxidized, called stack
loss y.

2.1 Theory
2.1.1 Linear regression as optimization

Linear regression, in its simplest form, is the problem of finding the intercept and slope of a line which best
fits a set of points. That is, solving the following optimization problem:

min
β0,β1

n∑
i=1

(yi − ŷi)
2

where
ŷi = β0 + xiβ1

or, written in matrix notation:

min
β

||Y −Xβ||22

which leads to the solution:

β = (XTX)−1XTY

2.1.2 Linear regression as probability

A probabilistic approach to linear regression is typically to model the errors as independent heteroschedastic
and normally distributed (encoded by the σ2I covariance matrix):

Y ∼ N (Xβ, σ2I)

And it’s possible to prove that maximizing the log-likelikood is equivalent to solving the aforementioned
optimization problem, as the normal log PDF is basically the sum of squared errors:

max
β

L(β;X,Y ) =
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max
β

logL(β;X,Y ) =

max
β

−1

2
||Y −Xβ||22 =

min
β

||Y −Xβ||22

2.1.3 Different flavors of regression

But we may want to vary this model. Maybe our errors are not normally distributed, maybe we care about
outlier robustness, maybe our requirements demand to minimize the absolute error.

In this example, we will explore 6 flavors of linear regression: normal errors, double exponential (or Laplace)
errors, and t-distributed errors. For each of these distribution, we will also study the effect of L2 regulariza-
tion, also known as Tikhonov regularization or ridge regression.

2.1.4 Double exponential errors

The double exponential distribution has the following PDF:

f(x | b, µ) = 1

2b
exp {−1

b
||x− µ||1}

and if we write our linear regression as:

Y ∼ DExp(Xβ, σ2I)

it is easy to prove that finding the maximum likelihood estimator for β means minimizing the absolute (or
L1) error:

min
β

||Y −Xβ||1 = min
β

n∑
i=1

|yi − xi
Tβ|

One of the strengths of this error distribution is its robustness with respect to the distribution of the response
variable. This allows it to be used for modeling heavy tailed or asymmetric errors.

2.1.5 t-distributed errors

Another option for modeling the distribution of the errors is assuming that they follow a t-distribution. This
is an additional method for handling heavy-tailed errors in which outliers might be present.

2.1.6 Ridge regression

Until this point, even though we are analyzing linear regression from a bayesian point of view, we have
not specified a prior on the coefficients β. We have derived the Maximum Likelihood Estimator for the
coefficients, but doing so, it’s as if we have implicitly used Maximum A Posteriori estimation with an
improper uniform prior.

It turns out that if we decide to use normal prior on the coefficients, we automatically get what is called Ridge
Regression. A type of regularized regression which is much more robust to colinearity in the explanatory
variables.

Let’s show how ridge regression naturally emerges from bayesian linear regression:

First of all let’s define our priors and likelihood:
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Y ∼ N (Xβ, σ2I)

β ∼ N (0, λ−1I)

We want to find the mode of our posterior i.e. find a Maximum a Posteriori estimator for β

max
β

π(β)L(Y | X,β) =

max
β

exp{− 1

2σ2
||Y −Xβ||2} exp {−λ

2
||β||2} =

max
β

− 1

2σ2
||Y −Xβ||2 − λ

2
||β||2 =

min
β

1

2σ2
||Y −Xβ||2 + λ

2
||β||2

This is the optimization problem we have to solve. In this form we see explicitly how the prior induces a
regulation term on the coefficients, encouraging them to be close to zero.

This can be solved by setting the gradient to zero and using the Moore-Penrose pseudo-inverse.

∇β
1

2σ2
||Y −Xβ||2 + λ

2
||β||2 = 0

1

σ2
XT (Y −Xβ) + λβ = 0

We can remove the σ2 factor by multiplying and keep the same λ with a small abuse of notation:

−XT (Y −Xβ) + λβ = 0

−XTY +XTXβ + λβ = 0

XTXβ + λβ = XTY

(XTX + λI)β = XTY

β = (XTX + λI)−1XTY
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2.2 Model
The JAGS model implements these the 6 regressions closely follows the formulas. The code shown below
implements regression with normal errors and uninformative priors, while the other models are commented.

The first step consists in standardizing each column of the input variables.

Then the model is defined, connecting the observed variables Y with the mean of the predictors µ. In
addition, for each observation, we are computing the residuals and classifying as outliers the points that are
more than 2.5 standard deviations outside of the mean.

Finally we are using either uninformative normal priors for the betas or we are performing ridge regression
by sampling the parameter φ (what we had called λ) from a Gamma distribution.

To sample from the posterior we use JAGS’s MCMC with 2 chains, 100 adaptation rounds, 1000 burning
rounds, and take 10000 samples per chain.

model {
# Standardise x's and coefficients
for (j in 1 : p) {
b[j] <- beta[j] / sd(x[ , j ])
for (i in 1 : N) {
z[i, j] <- (x[i, j] - mean(x[, j])) / sd(x[ , j])

}
}

b0 <- beta0 - b[1] * mean(x[, 1]) - b[2] * mean(x[, 2]) - b[3] * mean(x[, 3])

# Model
d <- 4; # degrees of freedom for t
for (i in 1 : N) {
Y[i] ~ dnorm(mu[i], tau)
# Y[i] ~ ddexp(mu[i], tau)
# Y[i] ~ dt(mu[i], tau, d)

mu[i] <- beta0 + beta[1] * z[i, 1] + beta[2] * z[i, 2] + beta[3] * z[i, 3]
stres[i] <- (Y[i] - mu[i]) / sigma
outlier[i] <- step(stres[i] - 2.5) + step(-(stres[i] + 2.5) )

}

# Priors
beta0 ~ dnorm(0, 0.00001)
for (j in 1 : p) {
beta[j] ~ dnorm(0, 0.00001) # coeffs independent
# beta[j] ~ dnorm(0, phi) # coeffs exchangeable (ridge regression)

}
tau ~ dgamma(1.0E-3, 1.0E-3)
# phi ~ dgamma(1.0E-2,1.0E-2)
# standard deviation of error distribution
sigma <- sqrt(1 / tau) # normal errors
# sigma <- sqrt(2) / tau # double exponential errors
# sigma <- sqrt(d / (tau * (d - 2))); # t errors on d degrees of freedom

}
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Figure 3: Graphical model for comparing linear regression models

2.3 Results
All six method give similar results for all parameters, confirming their consistency, as we can see from figure
4.
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Figure 4: Comparing the distributions of parameters fitted by the 6 models. Model A: normal. Model B:
double exponential. Model C: t-student. Model D: normal + Ridge. Model E: double exponential + Ridge.
Model F: t-student + Ridge.

Additionaly, we can print all points that have been classified as outliers in each model. We can observe that
the double exponential and t-student residual models classify more points as outliers. Finally, when adding
L2 regularization more points are classified as outliers in comparison to the unregularized model.

3 Alligators’ food choice: working with categorical data
Let us now analyze a different problem, moving from linear regression with quantitative predictors to logistic
regression with qualitative factors.
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Our example comes from Introduction to Categorical Data Analysis, by Alan Agresti [1]. Agresti analyses a
dataset on the alimentation of alligators. These alligators are classified by lake and by their length, separating
them into ones longer than 2.3 meters and ones shorter than 2.3 meters. The primary food choices of the
the alligators are five and we are interested in understanding how a specific food, lake, and length influence
their distribution.

3.1 Theory
3.1.1 Logistic regression as probability

Since this example models the alligator’s feeding choices with a multinomial random variable, let us begin
by introducing a simpler case: logistic regression. We will present it in a probabilistic perspective as an
instance of the Generalized Linear Model (GLM).

Each instance yi of the dependent variable Y is modeled with a Bernoulli random variable.

yi ∼ Bernoulli(p)

And the probability of success p is linked to the explanatory variable through the log-odds:

log p

1− p
= Xβ

We can compute the reverse relationship, to obtain a function from the the input data to the probability:

p =
1

1 + e−Xβ

To obtain obtain an estimator for the coefficients we can again decide to use maximum likelihood estimation,
which will yield a nonlinear system of equations. This system can be solved with iterative methods such as
Newton Raphson .

3.1.2 Extensions of logistic regression

To model the alligator’s data, two extensions to linear regression are required. For linear regression we are
modeling each response as a Bernoulli trial with 2 possible outcomes.

We can extend it to multiple K > 2 classes by modeling the response using a categorical distribution (also
called generalized Bernoulli distribution or multinulli distribution). This problem has now become multiclass
logistic regression or softmax regression.

We can extend our model to multiple experiments N > 1 by treating the response as a binomial random
variable, obtaining binomial regression.

And finally, when combining the two extensions (i.e. K > 2, N > 1) we obtain our model, where each
response is modeled as a multinomial random variable.

3.1.3 Hierarchical models

An important feature of the Alligators example is that it is a hierarchical (or multilevel) model. A hierarchical
model is a model with multiple levels, which allows parameters to be shared among different clusters in the
observed data.

In our case we have dimensions onto which the data is distributed. There are differences between foods,
differences between lakes, and difference between sizes. One approach to handle the case is to build multiple
models for each class, referred to as pooling. But such an approach might not always produce reliable results.
For example, the model corresponding to a class with very few students will be very misleading. A single
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unpooled model might not be able to fit sufficiently on the data. We want to find a middle ground that finds
a compromise between these extremes. This brings us to Bayesian hierarchical modeling.

3.2 Model
Below we show the JAGS code implementing the alligators hierarchical model .

The first step consists in specifying the priors for αk, βik, γjk. We are using normal uninformative prior with
mean 0 and variance 105. The first element or column of the parameters is initialized to 0 in order to allow
for easier comparison with the other parameters.

Then we define the likelihood, modeling each response Xij as a multinomial random variable with nij

(observed) experiments and a probability vector pijk. Each probability is defined as the sum of αk, βik, γjk.
Since these sums are not guaranteed to be probabilities we apply for each food the softmax activation function
to re-normalize them.

Finally we transform our outputs in order to compare them with Agresti’s result and perform a G-test for
goodness-of-fit. The G-statistic is proportional to 2N times the Kullback Leibler divergence.

To sample from the posterior we use JAGS’s MCMC with 2 chains, 100 adaptation rounds, 1000 burning
rounds, and take 10000 samples per chain.

var
X[I,J,K], # observations
n[I,J], # total for each covariate pattern
E[I,J,K], # fitted values
OlogOE[I,J,K], # O log O/E
G2, # goodness-of-fit statistic
mu[I,J,K], # Poisson means
phi[I,J,K], # exp (beta[k] ' x[i,j])
p[I,J,K], # fitted probabilities
lambda[I,J], # baseline rates in each covariate strata
alpha[K], # factor for food = 2,3,4,5
beta[I,K], # factor for lakes = 2,3,4, for each food
b[I,K], # factor for lakes = 2,3,4, relative to food 1, centred
gamma[J,K], # factor for size = 2, for each food
g[J,K]; # factor for size = 2, relative to food 1, centred
model {

# PRIORS

# Loop around foods
alpha[1] <- 0; # zero contrast for baseline food
for (k in 2:K){

alpha[k] ~ dnorm(0,0.00001); # vague priors
}

# Loop around lakes:
for (k in 1:K){

beta[1,k] <- 0; # corner-point contrast with first lake
}
for (i in 2:I) {

beta[i,1] <- 0; # zero contrast for baseline food
for (k in 2:K) {

beta[i,k] ~ dnorm(0,0.00001); # vague priors
}

}
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# Loop around sizes:
for (k in 1:K){

gamma[1,k] <- 0; # corner-point contrast with first size
}
for (j in 2:J) {

gamma[j,1] <- 0; # zero contrast for baseline food
for ( k in 2:K){

gamma[j,k] ~ dnorm(0,0.00001); # vague priors
}

}

# LIKELIHOOD
for (i in 1:I) { # loop around lakes

for (j in 1:J) { # loop around sizes
# Multinomial response
X[i,j,] ~ dmulti( p[i,j,] , n[i,j] );
for (k in 1:K) { # loop around foods

p[i,j,k] <- phi[i,j,k] / sum(phi[i,j,]);
log(phi[i,j,k]) <- alpha[k] + beta[i,k] + gamma[j,k];

}
}

}

# TRANSFORM OUTPUT TO ENABLE COMPARISON WITH AGRESTI'S RESULTS
for (k in 1:K) { # loop around foods

for (i in 1:I) { # loop around lakes
b[i,k] <- beta[i,k] - mean(beta[,k]); # sum to zero constraint

}
for (j in 1:J) { # loop around sizes

g[j,k] <- gamma[j,k] - mean(gamma[,k]); # sum to zero constraint
}

}

# FITTED VALUES
for (i in 1:I) { # loop around lakes

for (j in 1:J) { # loop around sizes
for (k in 1:K) { # loop around foods

E[i,j,k] <- p[i,j,k] * n[i,j];
OlogOE[i,j,k] <- X[i,j,k] * log( X[i,j,k] / E[i,j,k] );

}
}

}
G2 <- 2 * sum( OlogOE[,,] );

}

3.3 Results
We can analyze the results of the hierarchical model by box-plotting each one of the fitted parameters. In
figure 6 we can visualize the values of αk, i.e. the global popularity of every food. We can see that all foods
appear to be less popular than the first food: fish.

Moving to the β parameter we can see in figure 7 that, by changing lake, the distribution of food choices
changes. This could difference can be explained by noticing that each lake has a different habitat, thus a
difference distribution of animals that the gators can decide to feed on.
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Figure 5: Graphical model for the second example: alligators

Finally we analyze the γ parameter which describes how size influences the feeding choices. We can see that
large (size=2) alligators eat less invertebrates (food=2) and instead prefer reptiles or birds (foods=3, 4).
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